Total from area density

Problem: Charge is distributed on a disk of radius R so that the area charge density is proportional to the distance from the center, reaching a maximum value σ_0 at the far edge. Compute the total charge.

Total from area density

$$Q = \iint_{\text{disk}} \sigma \, dA$$

= $\int_{a}^{b} \int_{c}^{d} \sigma(x, y) \, dy dx$
= $\int_{-R}^{R} \int_{-\sqrt{R^{2}-x^{2}}}^{\sqrt{R^{2}-x^{2}}} \sigma(x, y) \, dy dx$
= $\int_{-R}^{R} \int_{-\sqrt{R^{2}-x^{2}}}^{\sqrt{R^{2}-x^{2}}} \frac{\sigma_{0}}{R} \sqrt{x^{2}+y^{2}} \, dy dx$
= not fun to evaluate

Turn to a different coordinate system: polar coordinates.

Area charge density example 2